Chelation of mitochondrial iron prevents seizure-induced mitochondrial dysfunction and neuronal injury.
نویسندگان
چکیده
Chelatable iron is an important catalyst for the initiation and propagation of free radical reactions and implicated in the pathogenesis of diverse neuronal disorders. Studies in our laboratory have shown that mitochondria are the principal source of reactive oxygen species production after status epilepticus (SE). We asked whether SE modulates mitochondrial iron levels by two independent methods and whether consequent mitochondrial dysfunction and neuronal injury could be ameliorated with a cell-permeable iron chelator. Kainate-induced SE resulted in a time-dependent increase in chelatable iron in mitochondrial but not cytosolic fractions of the rat hippocampus. Systemically administered N,N'-bis (2-hydroxybenzyl) ethylenediamine-N,N'-diacetic acid (HBED), a synthetic iron chelator, ameliorated SE-induced changes in chelatable iron, mitochondrial oxidative stress (8-hydroxy-2' deoxyguanosine and glutathione depletion), mitochondrial DNA integrity and hippocampal cell loss. Measurement of brain HBED levels after systemic administration confirmed its penetration in hippocampal mitochondria. These results suggest a role for mitochondrial iron in the pathogenesis of SE-induced brain damage and subcellular iron chelation as a novel therapeutic approach for its management.
منابع مشابه
Relationship between Mitochondrial Dysfunction and Multiple Sclerosis: A Review Study
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system that inflammation, demyelination, oligodendrocyte loss, gliosis, axonal injury and neurodegeneration are the main histopathological hallmarks of the disease. Although MS was classically thought as a demyelinating disease, but axonal injury occurs commonly in acute inflammatory lesions. In MS mi...
متن کاملGemfibrozil protect PC12 cells through modulation of Estradiol receptors against oxidative stress
Introduction: Neurodegenerative diseases are progressive disorders that could impair neuronal functions and structures. Oxidative stress and mitochondrial dysfunction are involved in the etiology of neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease and etc. Gemfibrozil is used as a therapeutic drug for hyperlipidemia. It has been shown that gemfibrozil is n...
متن کاملiPSC-derived neuronal models of PANK2-associated neurodegeneration reveal mitochondrial dysfunction contributing to early disease
Mutations in PANK2 lead to neurodegeneration with brain iron accumulation. PANK2 has a role in the biosynthesis of coenzyme A (CoA) from dietary vitamin B5, but the neuropathological mechanism and reasons for iron accumulation remain unknown. In this study, atypical patient-derived fibroblasts were reprogrammed into induced pluripotent stem cells (iPSCs) and subsequently differentiated into cor...
متن کاملProtective Role of Apigenin Against Aβ 25-35 Toxicity Via Inhibition of Mitochondrial Cytochrome c Release
Introduction: Cognitive dysfunction is the most common problem of patients with Alzheimer disease (AD). The pathological mechanism of cognitive impairment in AD may contribute to neuronal loss, synaptic dysfunction, and alteration in neurotransmitters receptors. Mitochondrial synapses dysfunction due to the accumulation of amyloid beta (Aβ) is one of the earliest pathological features of AD. Th...
متن کاملCurcumin Ameliorates Sodium Valproate Induced Neurotoxicity through Suppressing Oxidative Stress and Preventing Mitochondrial Impairments
Background and purpose: Curcumin is a natural polyphenolic compound in turmeric (Curcuma longa). Curcumin has potent free radical scavenger and antioxidant properties that could significantly reduce oxidative damage. Oxidative stress and mitochondrial dysfunction contribute to valproate sodium induced tissue damage. This study investigated the protective effects of curcumin against valproate so...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 28 45 شماره
صفحات -
تاریخ انتشار 2008